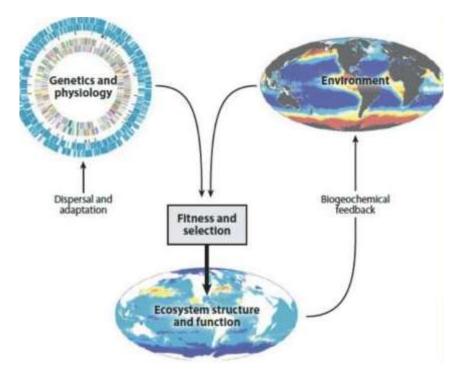


TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Die Ressourcenuniversität. Seit 1765.

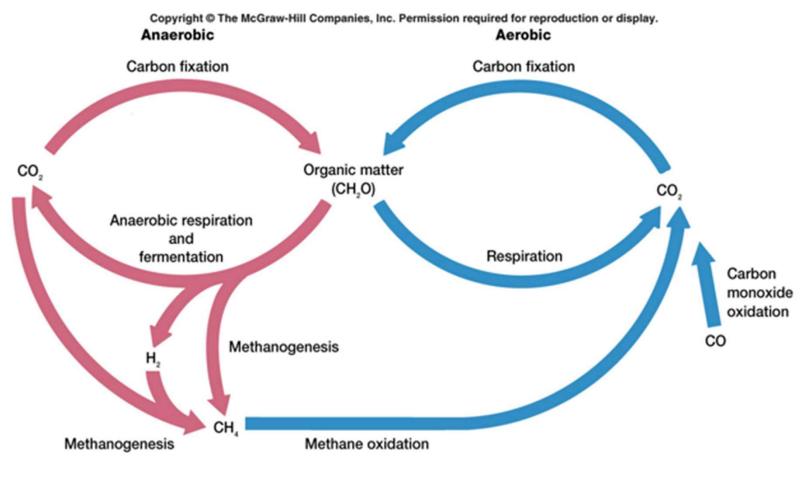
Bioremediation and phytoremediation 2021/22

Topic 4: Microbial basics of bioremediation

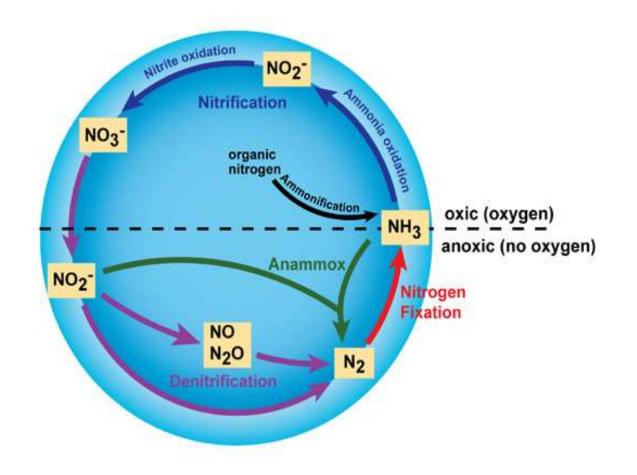


Jun.-Prof. Dr. Sabrina Hedrich TU Bergakademie Freiberg

"Everything is everywhere but the environment selects"

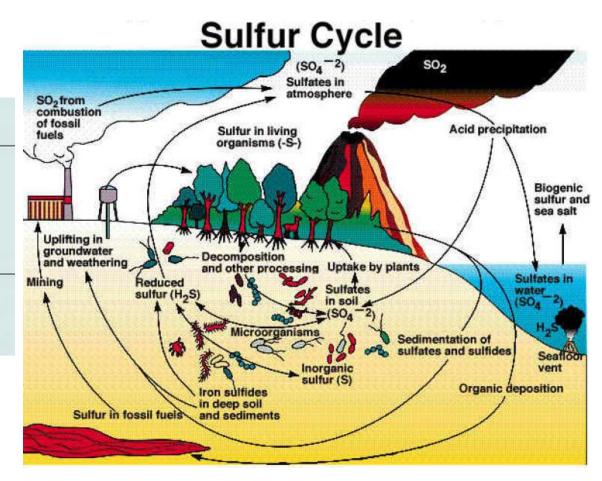

(L.G.M. Baas Becking, 1934)

- bring together microbiology and geochemistry
- understand elemental cycling through microbial activity



Microbial carbon cycle

Basic Carbon Cycle



Sulfur reservoir	Metric tons sulfur
Atmosphere	
SO ₂ /H ₂ S	1.4×10^{6}
Ocean	
Biomass	1.5×10^{8}
Soluble inorganic ions (primarily SO4 ^{2–})	1.2×10^{15}
Land	
Living biomass	8.5×10^{9}
Organic matter	1.6×10^{10}
Earth's crust"	1.8×10^{16}

R.Näveke, 1986: Environmental Microbiology Ian L. Pepper, Charles P. Gerba, Terry J. Gentry, Raina M. Maier; Academic Press, 13.10.2011

Living condition

Temperature range low (0-20°C)

medium (20-45°C) high(45-70°C) Extremely high (70-110°C)

pH-range

low (<pH 6) neutral (pH 6-7) high (>pH 7)

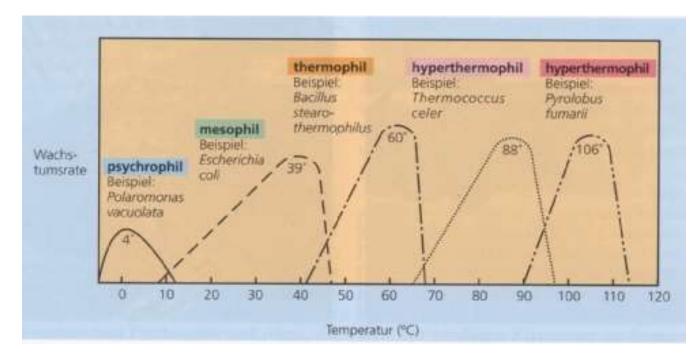
pressure

high

Osmotic pressure and water content high salt content

High sugar content High content of osmotic compounds

psychrophile mesophile thermophile extremely/hyper-thermophile

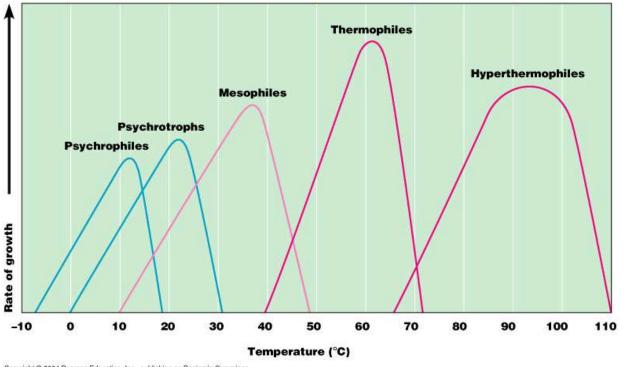

acidophile neutrophile alkalophile

barophile

halophile saccharophile osmophile

Relationship of temperature to growth rate of a typical psychrophile, a typical mesophile, typical thermophiles and two different hyperthermophiles

Brock, Lehrbuch Mikrobiologie

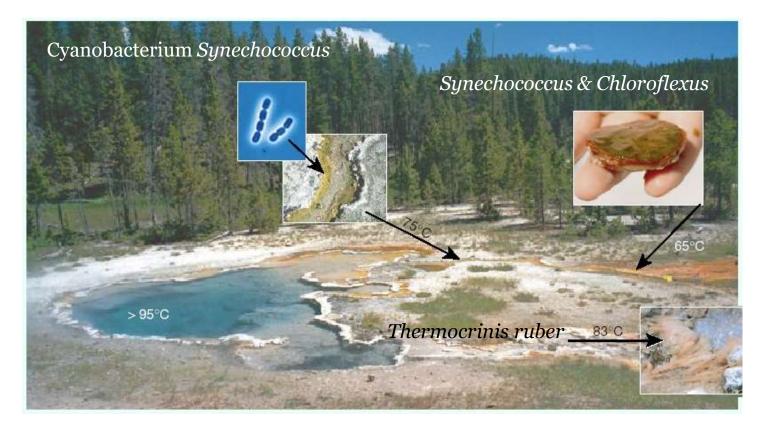


Psychrophile

- psychrós (cold)
- psychrotolerant

Thermophile

- ▶ thermós (warm)
- ► Thermotolerant

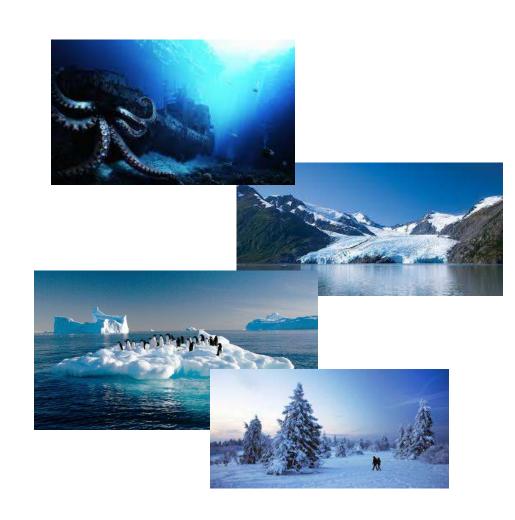

8

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

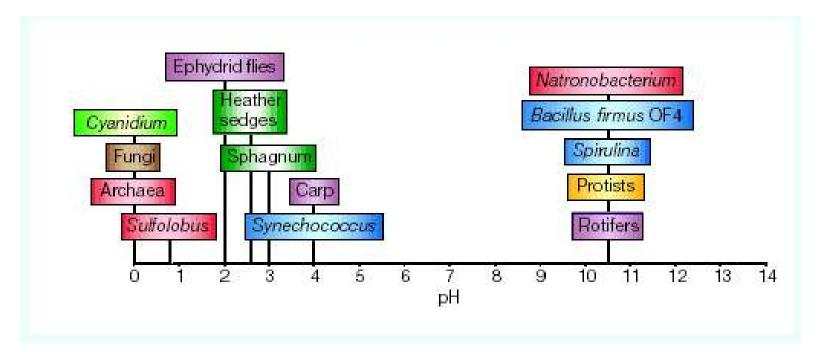
- The sulfur-reducing, marine bacterium Pyrodictium occultum holds a temperature record of 113°C
- Evidence of life up to 120°C
- If liquid water is the only prerequisite for higher life: in deep-sea wells at 250°C
- Mean life expectancy of essential cellular components shrinks above 130°C to a few minutes or seconds

Rothschild & Mancinelli 2001

- 75-80% of the Earth's surface is constantly cold (<5 $^{\circ}$ C)
- Permafrost 20% of the mainland surface
- Life in sea ice, permafrost, glaciers, Arctic and Antarctic rocks, icebergs
- MO active at -15 ° C
- Survival of MO in winter in polar systems to ensure colonization throughout the year
- Melting waters supply nutrients Microclimates for MO

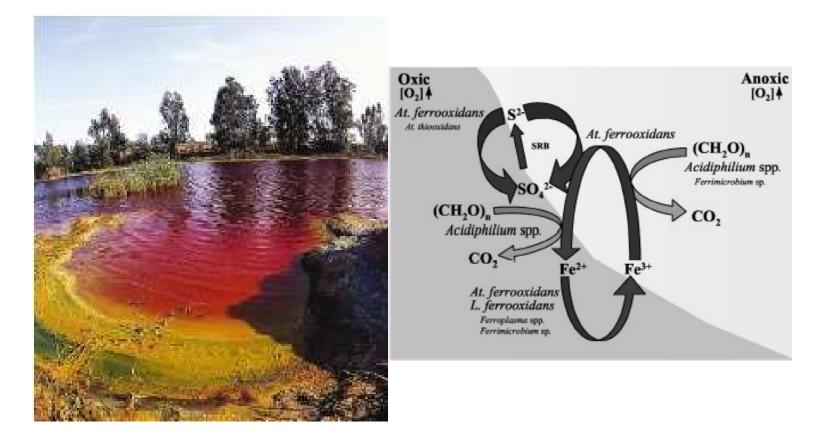


Temperature range: ~0°C – 20°C


- Optimum at ~15°C
- Cryophile ~-10°C

habitats

- Oceans (under the thermocline)
- Permafrost
- glaciers
- Antarctis
- Polar icecaps
- Snow fields, ...

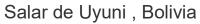

Archaea Bacteria, Algae, Protists, Fungi, Plants, Animals

Rothschild & Mancinelli 2001

Rio Tinto, Spain: 3-20 g/L Fe, pH ~ 2

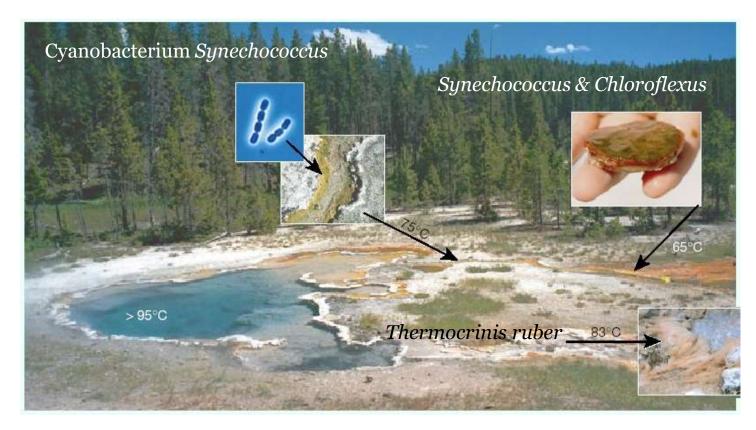
Zettler et al. 2002; González-Toril et al. 2003

Acidic habitats



BGR, Referat Geomikrobiologie; TZ Botswana

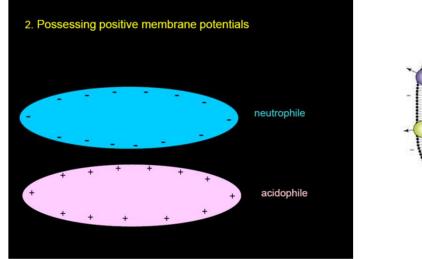
- Large salt lake and Dead Sea neutral pH and salinity> 20%
- Many saline waters are poor in Ca²⁺ and Mg²⁺ → increased carbonate content→ alkaline pH
- Lake Natron in the Kenyan Rift Valley (salinity> 30%, pH> 12, high T)

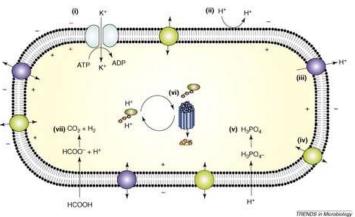


Lake Natron, Tanzania

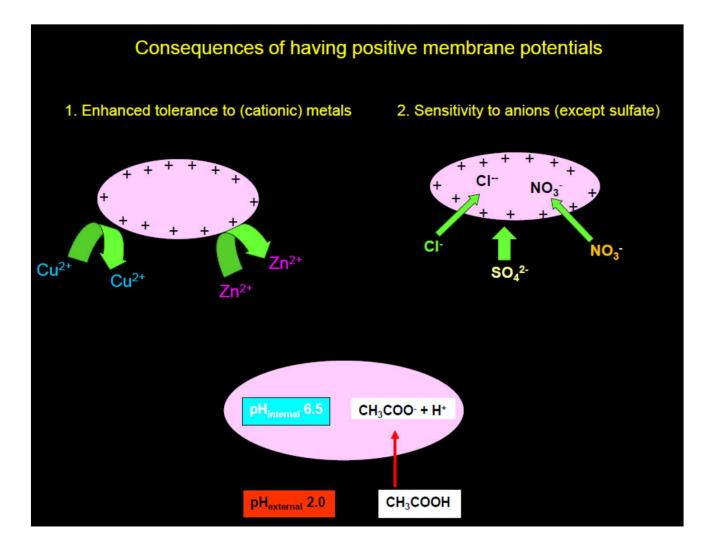
Octopus Spring, alkaline (pH 8.8–8.3) hot spring in Yellowstone National Park, USA

Rothschild & Mancinelli 2001


- Thermophiles: reduction of membrane fluidity (total fatty acids)
- Psychrophiles: increase in membrane fluidity (unspecified fatty acids)
- Acidophiles: positively charged cell surface, modified proteins,

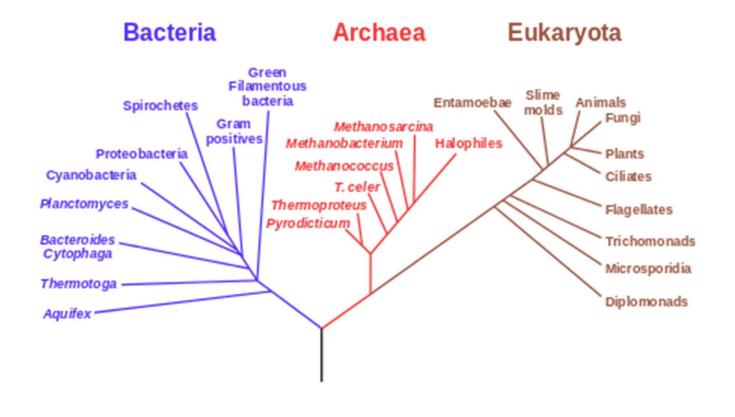

metal efflux systems

- Alkaliphiles: Negatively charged cell wall polymers
- Halophiles: increase in osmolarity in the cytoplasm



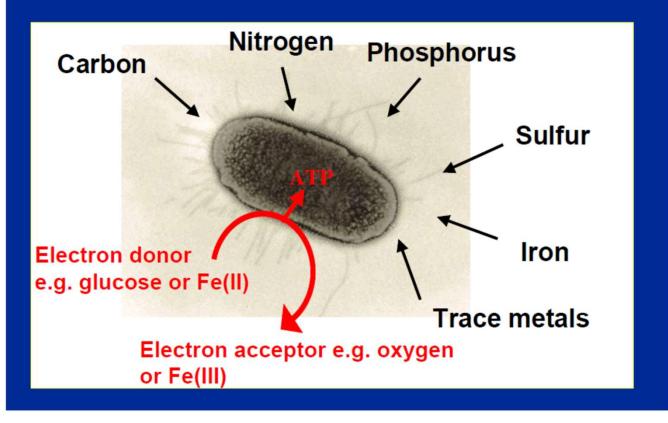
- positive membrane potential
- highly-impermeable cell membrane
- proton pumps actively carry H⁺ out of the cell to keep the cytoplasm neutral

Acidithiobacillus ferrooxidans tolerates high metal contents in solution:


- 12 g/L U₃O₈
- 72 g/L Ni²⁺
- 120 g/L Zn²⁺
- 160 g/L Fe²⁺

Acidithiobacillus ferrooxidans (30.000fach)

Phylogenetic Tree of Life



Important for the classification of the metabolism are energy, electron donor and C-source:

Energy: phototrophic (use of sunlight) chemotrophic (use of chemically bound energy, e.g., sugar)
 Electron donor: organotrophic (organic electron donor, e.g., sugar) lithotroph (inorganic electron donor, e.g., Fe (II), sulfide, H₂)
 C-source: autotrophic (CO₂ fixation, e.g., in green plants, bacteria) heterotrophic (organic C-source, e.g., sugar)
 Humans always chemo-organoheterotrophs, green plants are photolithoautotrophically bacteria and archaea contain almost all possible combinations

Nutritional requirements

Energy metabolism (electron flow) Fuels (EDIBLES!!) **Oxidants (BREATH**electrons ABLES !!) SUNLIGHT Glucose ORGANICS ORGANICS · Ethanol fumarate, DMSO Formaldehyde TMAO Methanol Carbon dioxide Hydrogen Sulfur Ammonia Sulfate 0 Hydrogen sulfide Arsenate Sulfur Selenite Iron: Fe(II) Iron: Fe(III) Manganese Manganese Carbon monoxide Nitrate Arsenite Oxygen

Examples of chemoorganotrophic organisms and chemoorganotrophic nutrient cycling:

- animals, humans, most bacteria:

 $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$

Examples of chemolithotrophic organisms and chemolithotrophic nutrient conversion:

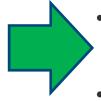
- Hydrogenotrophic bacteria e.g. genus *Ralstonia*:

 $2 \text{ H}_2 + \text{O}_2 \rightarrow 2 \text{ H}_2\text{O}$

-Bacteria of the species Acidithiobacillus thiooxidans:

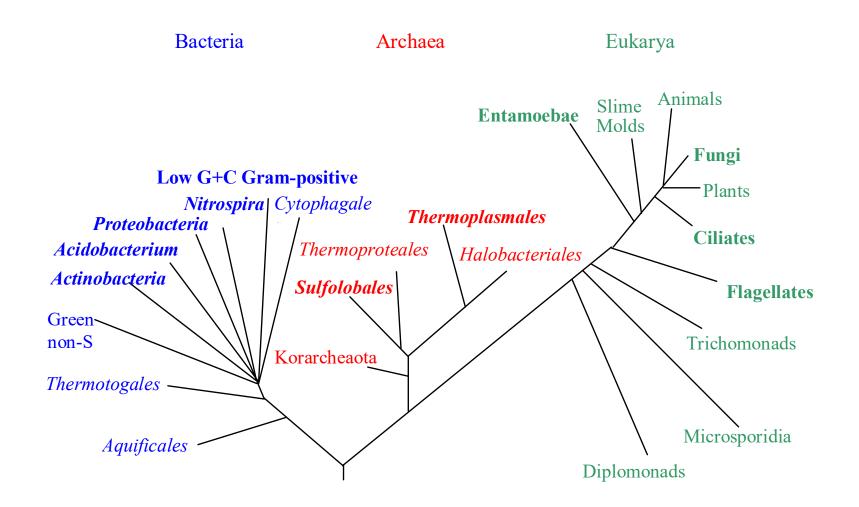
 S^0 + 2 $O_2 \rightarrow H_2SO_4$

- Sulfate-reducing bacteria e.g. genus Desulfovibrio:


 $4 \text{ H}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{H}_2\text{S} + 4 \text{ H}_2\text{O}$

Microbially-catalysed bioremediation can be carried out using extremely low pH solutions (lixiviants) under strongly oxidising conditions

Consequentially:


- 1. Sulfate and metals/metalloids present in waste water can be transformed
- 2. The extreme acidity means that most metals are soluble/bioavailable

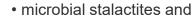
- elevated concentrations of Al, transition metals (Fe, Mn, Cu, Zn…), metalloids (As…), Groups I & II metals (Mg, K), and SO₄
- mineral leach liquors characterised by high osmotic potentials

selects for extremophilic prokaryotes: (thermo)acidophiles



(ii)) Where can acidophiles be found?

Occurrence of acidophilic bacteria

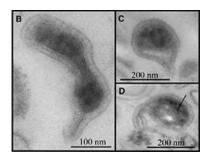

• biofilm on mineral surface

• macroscopic growths in streams

snottites

• planktonic phase of acidic water bodies, streams and pit lakes

- polymetallic deposit in California
- lowest reported pH (< 0)
- studied for many years by Jill Banfield's group


(biofilms, OMICS techniques, isolation,...)

• most diverse habitat in terms of physicochemical conditions and microbiology

(Fe/S-metabolism, mesophilic vs. thermophilic, Archaea, Eukarya,...)

discovery of several new acidophilic microorganisms

ARMAN- <u>A</u>rchaeal <u>R</u>ichmond <u>M</u>ine <u>A</u>cidophilic <u>N</u>anoorganisms

Nordstrom et al., 2000; Edwards et al., 1999; Tyson et al., 2004; Bond et al., 2000; Baker et al., 2006

Other important mine sites

Parys Mountain copper mine, UK

- moderate temperature
- anoxic underground lake
- dominated by *Acidithiobacillus ferrivorans*
- mesophilic Fe-oxidizers
- Archaea

Coupland and Johnson, 2004

Moderate acidic to circumneutral mine sites

Wheal Jane tin mine, Cornwall
moderate acidophiles/ acid-tolerant organisms
(Halothiobacillus neapolitanus)

Hallberg & Johnson, 2003

Rio Tinto (Spain)

Cantareras (Spain)

- At. ferrivorans and heterotrophs
- algaea

Dyffryn Adda (UK)

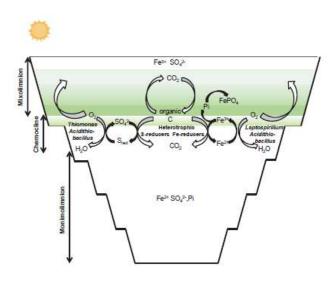
- draining Parys Mountain
- macroscopic growth of iron-oxidizer ,*Ferrovum myxofaciens*

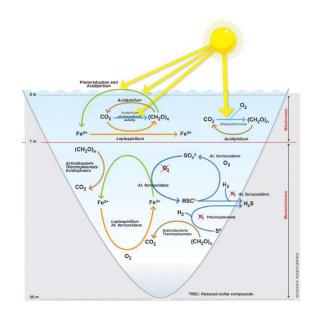
- ~ 100km long river in Spain
- iron is the dominant substrate
- macroscopic growths
- iron- and sulfur-cycling communities
- high diversity of eukaryotes
- "Mars-analogon"

Amils et al.; Gonzalez-Toril et al., 2003; Aguilera, 2013

Rowe et al., 2007

Kay et al., 2013




Acidic pit lakes

- result of opencast mining of coal or metals
- most intensively studied in Spain and Germany

- pit lakes in Germany pH 2-4
- rich in iron and sulfate (minor amounts of other toxic metals)
- nutrient concentration (P, N) is low

- geothermal areas will contain more moderate and extreme thermophilic acidophiles
- consider the pH of the environmental samples (moderate acidophiles pH 3-5; extreme acidophiles pH <3; hyper-acidophiles pH <1)
- abandoned mine sites are often excellent for sourcing acidophiles that are metaltolerant and are able to oxidise sulfide minerals
- sample low pH, oxygen-depleted environments if anaerobic are required

- Energy source: chemical or solar
- Carbon source: organic or inorganic (or both)
- Electron donors: ferrous iron, reduced sulfur, organic substrates, hydrogen
- Electron acceptors: oxygen, ferric iron, oxidized sulfur

Chemolithotrophy (the ability to use energy derived from oxidizing inorganic chemicals) is widespread amongst acidophiles

Iron-/sulfur-oxidizing acidophiles

 $S^0 \rightarrow SO_4^{2-}$

first acidophile to be discovered:
 Acidithiobacillus thiooxidans (formerly Thiobacillus thiooxidans)

• most widely studied iron-oxidizing acidophile: *Acidithiobacillus ferrooxidans* (formerly *Thiobacillus ferrooxidans*)

Iron-oxidizing acidophiles may be:

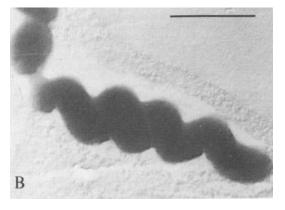
	<u>C-source</u>	Appropriate supply
1. Autotrophic (e.g. <i>Acidithiobacillu</i> s spp.)	CO ₂	air CO ₂ -enriched air
2. Obligately heterotrophic (e.g. <i>Ferrimicrobium</i> sp.)	organic C	yeast extract (0.02% w/v)
3. Facultatively autotrophic (e.g. <i>Sulfobacillus</i> spp.)	CO ₂ organic C*	air yeast extract

*generally superior growth

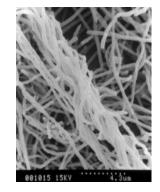
Acidophiles

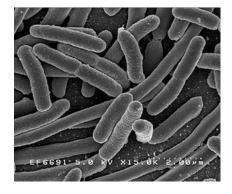
- best studied, because Fe^{2+} stable at pH <5
- bacteria and archea
- autotrophic, mixotrophic, heterotrophic

Acidithiobacillus ferrooxidans


 $Fe^{2+} + O_2 \rightarrow Fe^{3+} + H_2O$ (autotrophic)

 $Fe^{3+} + S^0 + 4H_2O \rightarrow Fe^{2+} + 8H^+ + SO_4^{2-}$ (anaerobic conditions)



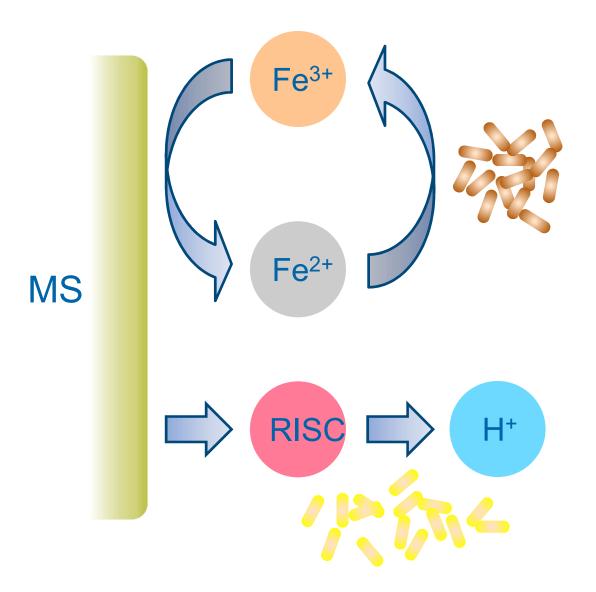

Iron-metabolising microorganisms

Leptospirillum ferrooxidans


Ferrimicrobium acidophilum

Sulfobacillus thermosulfidooxidans

Sulfolobus acidocaldarius


Acidianus brierleyi

However, bioremediation environments are necessarily non-sterile, and axenic cultures are never encountered

- consortia are more robust, and generally more efficient, than pure cultures
- acidophiles interact with each other in these environments, mostly in synergistic ways, though negative interactions have also been reported

Iron (and sulphur) oxidation

Sulfate reduction

Autotrophy/ Heterotrophy

Modest nutrient requirements (small quantities of NPK)

Acidotrophy

Aerobes and Anaerobes

- Aerobes- Use molecular oxygen as terminal electron acceptor
- Anaerobes Thrive under oxygen-limited conditions

Tolerance of physico-chemical conditions

- [metal]
- [anions]
- Mechanical shear (reactors)

IMPORTANT BIOREMEDIATION ACIDOPHILES

	Thermal classification ^a
Iron-oxidiser	
Leptospirillum ferrooxidans	Meso
L. ferriphilum	Mod Thermo
Ferrovum myxofaciens	Meso
Sulfur-oxidisers	
Acidithiobacillus thiooxidans	Meso
At. caldus	Mod Thermo
Metallosphaera spp.	Ext Thermo
Sulfolobus spp.	
Sulfate-reducing microorganisms	
Desulfotomaculum spp.	Meso
Desulfosporosinus spp.	
Heterotrophic acidophiles	
Acidocella sp.	
Acidiphilium spp.	Meso
Alicyclobacillus spp.	
Thermoplasma spp.	Mod Thermo
Obligate anaerobes	
Stygiolobus azoricus	Ext Thermo
Acidilobus aceticus	

^aMeso, mesophiles ($T_{optimum} < 40^{\circ}C$); Mod Thermo, moderate thermophiles ($T_{optimum} 40-60^{\circ}C$); Ext Thermo, extreme thermophiles ($T_{optimum} > 60^{\circ}C$);

Question: what species of microorganisms are actually found in bioremediation operations?

- It depends very much on the engineering system being used and the water chemistry
 - wetlands
 - stirred tanks
 - Oxygen supply
 - pH
 - metal concentration
 - substrate availability

Thank you for your attention!

Glück auf!