

Bioremediation and phytoremediation 2021/22 ASITAT
BIBERG
Topic 6: Biological mine water treatment
Topic 6: Biological mine water treatment
ANGLES OF THE WARD OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY.

Jun.-Prof. Dr. Sabrina Hedrich TU Bergakademie Freiberg

Acid mine/rock drainage is a global environmental issue

Citronen Fjord, High Arctic

Bor copper mine, Serbia

El Dollar mine, High Andes, Peru

-
- **Perceived issues with AMD/ARD**
• Acidity (proton and mineral; <5.0 but mostly <3.0)
• Concentration of (toxic) transition metals, and metalloids such as
As As • Acidity (proton and mineral; <5.0 but mostly <3.0)
• Concentration of (toxic) transition metals, and metalloi As
• High osmotic potential
• Elevated sulfate concentrations
-
-

Arsenic is occasionally the most significant pollutant in mine waters

e.g. Carnoulès, France

Groundwater is pumped to the surface & aerated

Chemical oxidation of ferrous iron in a surface lagoon

Iron flocs are filtered out in a constructed wetland

Active chemical remediation of AMD (HDS* approach)

Appropriate for net acidic AMD, that contain dissolved Al and heavy metals, other than Fe: **1. Active chemical remediation of AMD (HDS* approach)**

Appropriate for net acidic AMD, that contain dissolved AI and heavy metals, ot

than Fe:

1. Addition of lime (CaO) slurry to increase pH

2. Active aeration to (ch 2. **Active chemical remediation of AMD (HDS* approach**

2. Appropriate for net acidic AMD, that contain dissolved AI and heavy met

2. Addition of lime (CaO) slurry to increase pH

2. Active aeration to (chemically) oxidi 3. **Active chemical remediation of AMD (HDS* approach)**
 χ

Appropriate for net acidic AMD, that contain dissolved AI and heavy metals, other

than Fe:

1. Addition of lime (CaO) slurry to increase pH

2. Active aerati Appropriate for net acidic AMD, that contain dissolved AI and heavy metals, of than Fe:

4. Addition of lime (CaO) slurry to increase pH

4. Addition of a chemical flocculant to coagulate ferric precipitates into a s

4. Addition of lime (CaO) slurry to increase pH
Active aeration to (chemically) oxidise Fe^{2*}
Addition of a chemical flocculant to coagulate ferric precipitates into a sludge
Dewatering of the sludge to reduce its bulk ($\$

-
-
-
- -) and the set of \overline{a}

Addition of flocculant

Dewatering and formation of HDS

Generally considered a high cost option, e.g. ~\$3 million/annum to treat AMD at the former Wheal Jane tin mine, south-west England

Passive Bioremediation Systems **Passive Bioremediation Syste**

- natural and constructed aerobic and comper-

- permeable reactive barriers

Advantages:

• low maintenance costs

• use natural biological processes

Pisadvartages **Passive Bioremediation Systems**

- natural and constructed aerobic and compost wetlar

- permeable reactive barriers

Advantages:

• low maintenance costs

• use natural biological processes

Disadvantages: **Passive Bioremediation Syste**

- natural and constructed aerobic and comp

- permeable reactive barriers

Advantages:

• low maintenance costs

• use natural biological processes

Disadvantages:

• construction costs

• r **Passive Bioremediation Systems**

- natural and constructed aerobic and compost wetl

- permeable reactive barriers

Advantages:

• low maintenance costs

• use natural biological processes

Disadvantages:

• construction **Passive Bioremediation Systems**
- natural and constructed aerobic and compost wetlands
- permeable reactive barriers
Advantages: **Passive Bioremediation Syste
- natural and constructed aerobic and complements**
- permeable reactive barriers
Advantages:
• low maintenance costs

- natural and constructed aerobic and compos
• permeable reactive barriers
Advantages:
• low maintenance costs
• use natural biological processes
Disadvantages:
• construction costs
• requirement of land area ("footprint") - natural and constructed aerobic and compost w
- permeable reactive barriers
Advantages:
• low maintenance costs
• use natural biological processes
Disadvantages:
• construction costs
• requirement of land area ("footprin
-

Advantages:

-
-

Disadvantages:

-
-
-
-

Functions:

-
- low maintenance costs
• use natural biological processes
Disadvantages:
• construction costs
• requirement of land area ("footprint")
• can be unreliability and inefficient
• disposal of spent composts
• Functions:
• rem • use natural biological processes
• use natural biological processes
• requirement of land area ("footprint")
• can be unreliability and inefficient
• disposal of spent composts
• removal of iron (aerobic wetlands)
• remo discrimintation of alkalian processes

• construction costs

• requirement of land area ("footprint")

• can be unreliability and inefficient

• disposal of spent composts

• removal of iron (aerobic wetlands)

• removal o
-

constructed aerobic wetland (coal mine drainage, north-east England)

anaerobic compost "reactor" construction (metal mine drainage, south-west England)

RAPS (coal mine drainage, south Wales)

Both active chemical and passive (compost-based) remediation systems are either expensive to set up or to operate, and produce hazardous wastes (metal-rich sludge or metal-rich spent compost) which: **Example 19 reduced and passive (compost-based)** remediation systems are either expensive to set up or to operate, and produce hazardous wastes (metal-rich sludge or metal-rich spent compost) which:
• require storage in From the potential and passive (compost-based) remediation
experiences are either expensive to set up or to operate, and produce
hazardous wastes (metal-rich sludge or metal-rich spent compost)
which:
• require storage in **Example 19 Solution Systems** are either expensive to set up or to operate, and produce hazardous wastes (metal-rich sludge or metal-rich spent compost) which:

• require storage in landfill sites designated for hazardou

-
-
-

Both these remediation systems have major drawbacks, and should be considered only as intermediary solutions to the problem until more environmentally-acceptable solutions have been developed and validated

Rather than considering AMD/ARD as a waste material, we should consider it as a potential resource of: Rather than considering AMD/ARD as a
consider it as a potential resource of:
• heat
• minerals Rather than considering AMD/ARD as a
consider it as a potential resource of:
• heat
• minerals
• metals Rather than considering AMD/ARD as a
consider it as a potential resource of:
• heat
• minerals
• metals

-
-
-

**systems that exhibit attenuation of

"Ferrovum"-dominated biomass in a AMD

stream draining the San Telmo mine, Spain

Fe** $^{2+} \rightarrow$ **Fe** $^{3+}$ Learn from and adapt "natural" systems that exhibit attenuation of mine waters………

"Ferrovum"-dominated biomass in a AMD For "Ferrovum"-dominated biomass in a AMD
stream draining the San Telmo mine, Spain
 $Fe^{2+} \rightarrow Fe^{3+}$
Selective removal of Cu in AMD draining the
Cantareras mine, Spain
• CO₂ → organic C (algae)
• organic C + SO₄² + Cu

$$
\text{Fe}^{2+} \rightarrow \text{Fe}^{3+}
$$

Selective removal of Cu in AMD draining the

-
- *Co₂* → *Comm*ⁿ-dominated biomass in a AMD
stream draining the San Telmo mine, Spain
 $Fe^{2+} \rightarrow Fe^{3+}$
Selective removal of Cu in AMD draining the
Cantareras mine, Spain
• CO₂ → organic C (algae)
• organic C + SO₄² **• stream draining the San Telmo mine, Spain**
 $Fe^{2+} \rightarrow Fe^{3+}$

Selective removal of Cu in AMD draining the

Cantareras mine, Spain

• CO₂ → organic C (algae)

• organic C + SO₄^{2 +} Cu²⁺ → CuS + CO₂

(sulfate red the San Telmo mine, Spain

Fe²⁺ → Fe³⁺

Cu in AMD draining the

in

C (algae)

²⁻ + Cu²⁺ → CuS + CO₂

ucing bacteria) $Fe^{2+} \rightarrow Fe^{3+}$

removal of Cu in AMD draining the

s mine, Spain

→ organic C (algae)

nic C + SO₄²⁻ + Cu²⁺ → CuS + CO₂

(sulfate reducing bacteria)

…and to combine this with chemical constraints and opportunities

Development of new biological process options

- **Example 20 Allen Schedulary Correlation**

 metals are selectively removed from mine waters, forming "clean"

precipitates that can be re-used

 mine waters are considered as resources, rather than wastes precipitates that can be re-used
-
- **Example 19 September 10 September 20 Se Example 19 Sevelopment of new biological process options**

• metals are selectively removed from mine waters, forming "clean"

precipitates that can be re-used

• mine waters are considered as resources, rather than waste solutions)

Zn Cu Ni SO_4^2 H+

Selective removal of iron from Mynydd Parys AMD

Mine water treatment plant – Iron recovery
ale plant at Nochten, Germany*, where acidic iron-rich ground-

pilot-scale plant at Nochten, Germany*, where acidic iron-rich groundwater at a lignite mine is being remediated **11 plant – Iron recovery

hany*, where acidic iron-rich ground-

• plant contains naturally enriched bacteria

• Schwertmannite is a valuable product

• schwertmannite is a valuable product**

-
-
-
-

*operated by G.E.O.S. Heinzel et al., 2009, Hedrich et al., 201, Janneck et al., 2012

"Fv. myxofaciens" produces copious amounts of extracellular polymeric substances (EPS)

Micrographs of "Fv. myxofaciens" Arrows indicate dehydrated EPS

Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium "Ferrovum myxofaciens"

Acid streamer growths (dominated by "Fv. myxofaciens" and At. ferrivorans)

D. Barrie Johnson, Kevin B. Hallberg, Sabrina Hedrich* School of Biological Sciences, Bangor University, Bangor, United Kingdom

Three connected modules that operate in continuous flow mode

PARKACAK

A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters

Sabrina Hedrich*, D. Barrie Johnson School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK

Ferrous iron is microbially oxidised in reactor 1

precipitated in reactor 2

Final traces of soluble iron are removed in reactor 3

Data from experimental tests

-
-
-
-
-
-

Option 2: reductive biomineralisation

- **Bacterial sulfate reductive biomineralisation**
• Bacterial sulfate reduction can have three important roles in mitigating mine waters: waters: **Option 2: reductive biomineralisation**

Bacterial sulfate reduction can have three important role

waters:

- precipitating transition metals and As (CuS, ZnS, As₂S₃ et
 $H_2S + Me^{2+} \rightarrow MeS\downarrow + 2 H^*$

- lowering sulfate
- precipitating transition metals and As (CuS, ZnS, As $_2$ S $_3$ etc.); H_2S + Me²⁺ \rightarrow MeS \downarrow + 2 H⁺
-

Bacterial sulfate reduction can have three important roles in mitigating mine
waters:
- precipitating transition metals and As (CuS, ZnS, As₂S₃ etc.);
 $H_2S + Me^{2+} \rightarrow MeS \downarrow + 2H^*$
- lowering sulfate concentrations
- remo $4 C_3H_8O_3^* + 7 SO_4^{2-} + 14 H^+ \rightarrow 12 CO_2 + 7 H_2S + 16 H_2O$ (pH 4) $4 C_3H_8O_3^* + 7 SO_4^{2-} + 1.5 H^+ \rightarrow$ $3 CO₂ + 9 HCO₃ + 3.5 H₂S + 3.5 HS + 7 H₂O$ (pH 7)

*glycerol

Example 3
 Example 3

Find the value of the Netherlands (Paques, the Netherlands), based on sulfate reduction

• Thiopaq process (Paques, the Netherlands), based on sulfate reduction

• BioteQ process (BioteQ corp, Can **Example 18 Biosulfidogenic processes** for remediation mine waters/sulfate-

inch water already exist:

• Thiopaq process (Paques, the Netherlands), based on sulfate reduction

• BioteQ process (BioteQ corp, Canada), based Biosulfidogenic processes for remediation mine waters/sulfate-
rich water already exist: rich water already exist:

-
-

both biotechnologies utilise neutrophilic bacteria

Biological H₂S production and metal sulfide precipitation

Novel modular low pH sulfidogenic bioreactors that also operate as continuous flow modular units

A 1 AN ANALO ANNA MORE DOLLAR DODGE

Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic
sulfidogenic bacteria

to^{t,2} and D. Barrie Jo chool of Biological Sci
ngor LL57 2UW, UK. ces, Bangor Un

ion to location, as these are vary from k hemical, climatic, hydro ally enhanced

 $\chi^*_{\text{e.g.}}$
• many transition metals can be highly effectively removed from mine waters as
reduced sulfide minerals
• again the challenge is to make a "clean" products, i.e. free of other metal suflides $R_{\text{RISR}}^{\text{GMA}o}$
 $\frac{1}{N}$
 $\frac{1}{N}$

• many transition metals can be highly effectively removed

reduced sulfide minerals

• again the challenge is to make a "clean" products, i.e, frand other minerals such as gibb

lighly effectively removed from mine waters as

a "clean" products, i.e, free of other metal sufildes

ite (Al(OH)₃)

metals based on the different solubilities of their

sulfide phases $\begin{array}{l} \times \\ \times \\ \times \end{array}$
• many transition metals can be highly effectively removed from mine waters as
• again the challenge is to make a "clean" products, i.e, free of other metal suflides
and other minerals such as gibbs and other minerals such as gibbsite $(\mathsf{Al}(\mathsf{OH})_3)$

Selective recovery of transition metals based on the different solubilities of their

The modular units can be used to precipitate metals both off-line and within the bioreactor itself

Remediation example 1: removal of sulfate, diation example 1: removal of sulfate,
Nochten lignite mine, Germany
Chemical composition of
synthetic mine water

Chemical composition of synthetic mine water

Objectives:

- to lower $[SO_4-S]$ to <30 mg/L
-

- $[SO_4$ -S] was lowered to <20 mg/L
-
-

Combined bioremediation and resource recovery from a highly ed bioremediation and resource recovery from a highly
complex mine water (Maurliden mine, Sweden)
component mg/L
Fe 403

Discharge rate: 10 L/s

Objectives:

-
-
-

Arsenic exists as both As (III) and As (V) (H₃AsO₃ and H₂AsO₄⁻ at pH 2)

As (III) can be precipitated as a sulfide (As_2S_3) by, e.g. Desulfotomaculum spp. (and oxidized to As (V) by some acidophiles)

$$
H_2ASO_4^-
$$

As (V) can be adsorbed onto positively-charged colloids

Stage II: Iron recovery – oxidative process

-
- Module 2

Modular iron oxidation/precipitation system

dophilic iron-oxidizer *Ferrovum myxofaciens*

overy of iron as schwertmannite

Hedrich & Johnson (2012) Bioresource Technol., 106, 44-49
-

7 $\mathsf{C}_3\mathsf{H}_8\mathsf{O}_3$ + 7 Zn $^{2+}$ + 14 H $^+$ + 14 SO $_4{}^{2-}$ $\!\rightarrow$ 21 CO $_2$ + 7 ZnS + 7 $\mathsf{H}_2\mathsf{S}$

Microb. Biotechnol. 5, 34-44

Take home messages:

- Take home messages:

(i) mine waters should be considered as potential resources rather than only

wastes

(ii) recover and recycle metals, rather than dump in land fill sites wastes Take home messages:

(i) mine waters should be considered as potential resources rather than only

wastes

(ii) recover and recycle metals, rather than dump in land fill sites

(iii) biotechnologies are available for doing Take home messages:

(i) mine waters should be considered as potential resourd

wastes

(ii) recover and recycle metals, rather than dump in land f

(iii) biotechnologies are available for doing this
 20^{th} century
 21
-
-

20th century 21st century

mixed metal sludge

expression to the composer
 $\begin{array}{ccc}\n\text{constrained component} & \text{copper}\n\end{array}$ or contaminated compost copper zinc iron

Thank you for your attention!

ttention!
Glück auf!
Clück auf!